
The surfer problem:                             
A “whys” approach 

Larry Copes and Jeremy Kahan 
Published in Mathematics Teacher. August, 2006. Do not reproduce. 

The class was accustomed to problem-based teaching.1 So they were ready to work when 
they saw this classic problem (Jacobs, 1974, pp. 3-6; Jones and Shaw, 1988; Courant and 
Robbins, 1941, p. 359): 

A surfer, shipwrecked on an island in the shape of an equilateral triangle, 
wants to build a hut so that the sum of its distances to the three beaches is 
minimal.  Where should the hut be located? (See Figure 1.) 

a

b

c

 

Figure 1: The surfer problem is to minimize a + b + c 

The class members immediately looked around for materials.  They found string, 
scissors, tape measures, protractors, and sticky notes.  Some students wanted to work on 
Geometer’s Sketchpad (Jackiw, 2001), but the instructor asked them not to. The centroid 

                                                

1 In this article we compose experiences of classes of secondary teachers we have taught. 
That the problem is suitable for use with high school students is evidenced by its 
inclusion in Education Development Center (2000) and testimony of teachers who have 
used it, such as Cuoco, Goldenberg, and Mark (1995). 
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was a popular conjecture. In groups of four or five, the class members began to model the 
problem physically, constructing equilateral triangles (by SSS with 3 equal length strings 
or by SAS or ASA with a protractor), recording preliminary conjectures. As groups stuck 
notes at possible hut locations, made measurements, and added distances (recorded on the 
notes), they began to notice a pattern; their surprise at the results led them to make more 
measurements.  Eventually, they generated a conjecture: The sum of distances is the same 
no matter where the hut is located.  They didn’t quite trust their conjecture, however, 
since their (imprecise) measurements varied so much. The students were not surprised 
that their instructor asked them to prove or disprove this conjecture for homework. 

Why this pedagogy? 
Some questions that might come to mind concern the teaching method used. 

First, why didn’t we pose the problem in a less time-consuming way? For example, we 
might have instructed, 

Prove that the sum of distances from all points in the interior of an equilateral 
triangle to the three edges is the same. 

We chose our phrasing for several reasons. It is engaging for many students, with both a 
story and a kinesthetic component. Moreover, as Fawcett (1938) pointed out, the deepest 
understanding of a theorem (or non-theorem) can come when students know the “givens” 
but must explore and make conjectures about what is to be proved. Much later, Bell 
(1976) and de Villiers (1999) led the way in exploring the role of proof as providing an 
intellectual challenge for students as mathematicians.  Observations that surprise students 
are a powerful stimulant for them to take on the challenge of proof. 

Another question about the teaching approach could be why we asked students not to use 
geometry software initially. Our hunch is that student interest built more effectively over 
time this way than it would have with the quickness of automation.  Moreover, we 
wanted to keep the physical setting active (rather than sedentary), and doing so also 
forced positive interdependence among group members, because they needed multiple 
people to stretch tape measures, measure, and track the points. Perhaps more importantly, 
measuring by hand led to interesting questions about errors:  “Would more of those sums 
have been equal if we had measured more exactly?” To resolve such issues, students 
turned naturally to justification and proof. 

First proofs 
A number of proofs of the surfer conjecture have come from students, from colleagues, 
from the literature, or from us.  We have arranged a selection of them here according to 
lessons we can learn from them. 
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Sketchpad proof? 

The fact that Geometer’s Sketchpad was not allowed at the outset did not prevent some of 
these students from presenting an electronic sketch, such as the one in Figure 2, as a 
proof in the next class session.   

Distance E to FG( )+ Distance E to GH( )+ Distance E to FH( ) = 6.60 cm

Distance E to FH = 1.20 cm

Distance E to GH = 2.33 cm

Distance E to FG = 3.07 cm

G

F H

E

 

Figure 2: “Let’s prove it in Sketchpad!” 

 

Seeing that the sum of distances remained constant as the hut (point E) moved around 
convinced most of the students that the conjecture was true. Work with Sketchpad also 
convinced students that the triangle needs to be equilateral for the sum of distances to be 
constant, and that the moving point needs to be inside (or on) the triangle. 

But was the demonstration a proof? The class began arguing.  After all, it’s not really a 
logical verification of the conjecture. Bell (1976) and de Villiers (1999) argue that proofs 
aren’t just for verification; they can also serve the purpose of convincing. They can, but 
must they?  Is every logically valid proof a convincing argument?  Conversely, is every 
convincing argument a valid proof? If so, did the measurements done with string and tape 
measures constitute a proof? 

When students “prove” empirically, whether with string or on Sketchpad, they do so in 
the everyday sense of the word. Some students extend to mathematics courtroom 
standards of “preponderance of evidence” or “beyond a reasonable doubt.” Nonetheless, 
the mathematical standard for convincing that we try to grow in ourselves and our 
students goes beyond empiricism. We are not arguing that empiricism does not have a 



Copes and Kahan, The Surfer Problem  4 

place in mathematics, but rather that it needs to be complemented by skepticism and a 
desire for logical proof.  

The best proofs convince by giving insight into the mathematical relationships. Not only 
do they compel belief; they make the listener wiser. They do not just prove, they explain 
(Hanna 1995).  They answer the question Why?  The Sketchpad demonstration doesn’t 
seem to answer the question Why? for most of us.  We especially yearn for an answer to 
that question if, as in this case, a conjecture is counter-intuitive. 

Coordinate geometry proof 

Here’s a sketch of a proof that is more logically compelling.  Does it answer the question 
Why? 

To minimize fractions, give the equilateral triangle’s sides length 2s (with s > 0) and 
place its vertices at (0,0), (2s, 0), and (s, 3 ).  (Figure 3)   

(0, 0) (2s, 0)

(s, s 3)

(h, k)

 

Figure 3: A coordinate geometry approach 

The edges have equations y = 0, y = 3 x, and y = – 3 x + 2 3 s. As needed, use the fact 

that the distance from point (h, k) to line Ax + By + C = 0 is 
Ah + Bk + C

A
2
+ B

2
 to get the sum 

of distances from (h, k) to the edges as 
3h ! k

4
+
! 3h ! k + 2 3s

4
+ k .  Because the 

point (h, k) is inside the triangle, the absolute value signs can be dropped, making a sum 
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of 3 s, independent of the point (h, k). (In some students’ work, it may be that the 
quantity can be shown to be negative, and a factor of –1 must be introduced to reach the 
same result.) 

A question arises from this proof: Is it significant that the sum 3 s is the altitude of the 
equilateral triangle with side 2s? This question may be an example of how, as de Villiers 
(1999) says, a proof might serve the purpose of discovery. 

Area proof 

Among the proofs we know of, this one requires the fewest words.  (See Jones and Shaw, 
1988.)  Connect the hut with each vertex of the triangle.  (Figure 4) Let the sides of this 
triangle have length s. 

a

b

c

s

s
s

D

E

F  

Figure 4: Area proof 

 

These segments partition the triangle into the smaller triangles DHE, FHE, and FHD.  

The sum of the areas of these smaller triangles is 
1

2
as + 

1

2
bs + 

1

2
cs = 

1

2
s(a + b + c). 

That is, this sum is a constant times the sum of the three perpendiculars.  But this sum is 
the area of the large triangle, so it is independent of the location of the hut.  In fact, 

because the area of the equilateral triangle is 
s
2
3

4
, we have that the constant sum is a + 

b + c = 
s 3

2
, confirming the above calculation. One could then probe as suggested at the 

end of the coordinate geometry proof. 
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Why more than one proof? 
We’ve shown two proofs of the surfer conjecture. Why might it be useful for students to 
see more than one proof of a theorem?   

One reason, as Winicki-Landman (1998) points out, is that students can learn to 
appreciate the elegance of a proof only by seeing some that aren’t so elegant.  The area 
proof might be seen to be more elegant than the coordinate geometry proof, for example. 
Another reason to show students more than one proof is to allow them to see different 
ways of thought.  For example, the terse proof above illustrates that area is a good 
invariant to consider.  In our experience, in a typical class of teachers about one or two 
have the ingenuity to hit on the area proof, but many will diligently (with well-placed 
hints such as “Have you used the fact that the hut is on the island?”) plug through the 
coordinate geometry one. (Still others attempt synthetic methods, which can succeed.) To 
give only the area proof and say “you should have been ingenious” would be 
unsatisfactory. And, as the National Council for Teachers of Mathematics contends in 
Geometry from Multiple Perspectives, multiple proofs can be mutually enhancing and 
reinforcing (Coxford, Burks, Giamati, and Jonik, 1991). 

A particularly compelling reason for us to show multiple proofs is to answer the question 
Why? This is what Bell (1976) called the illumination function of proof.   

We’ve come to realize that no single explanation answers the question Why? for 
everyone. Though most will be compelled to concede the truth of the conjecture by either 
the area or the coordinate geometry proof, whether either makes them feel wiser is a 
different matter. Some people would be satisfied with the coordinate geometry proof 
above.  Others would think the area proof is enlightening. Still others wouldn’t be 
satisfied that either of these proofs answer the question Why?. 

Even more proofs 
A transformational proof 

One student in the class proposed a transformational proof.  Cut the triangle through a 
point parallel to one side. Then move the cutoff piece through a rotation and translation—
transformations that preserve lengths—to another side of a smaller equilateral triangle 
(see Figure 5). 
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Figure 5: Transformation proof, step one 

Cut the resulting triangle parallel to the third edge, making the special point a vertex of a 
smaller equilateral triangle.  Rotate and translate the additional piece to make a triangle 
congruent to the original. (Figure 6) 

 

 

Figure 6: Transformation proof, step two 
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The lengths of the original paths to the beaches add up to an altitude of this triangle.  So 
indeed the constant sum is an altitude, as we conjectured earlier.  

In fact, one can construct a similar proof synthetically. 

A right triangle proof 

Some people prefer kinesthetic answers to the question Why?  If the hut is at a vertex, 
then the sum of distances to the edges is the length of an altitude from that vertex. Now 
imagine moving the hut slightly away from that vertex.  In the special case that the hut is 
still on the altitude, as in figure 7, the distance to the base along the altitude is shortened, 
but the distances to the other two sides are now non-zero.   

a b

 

Figure 7: Invariance when the hut moves along the altitude 

Has their sum compensated for what is lost in the distance to the base?  Thanks to having 
two 30º-60º-90º triangles, each of the lengths a and b is half of the length lost, so the total 
distance is indeed invariant under motion in this special case.   

In the more general case, where the hut isn’t necessarily moved along the altitude (Figure 
8), an auxiliary line parallel to the base makes a new equilateral triangle.  

a

b

 

Figure 8: Invariance when the hut moves horizontally 
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Now  a and b are legs of other 30-60 right triangles, each 
3

2
 times the corresponding 

hypotenuse. So the sum a + b is 
3

2
 times the base of this smaller equilateral triangle and 

thus equals its altitude. Again, the sum of the distances is invariant under the 
displacement of the hut. 

Earlier we mentioned several reasons that students benefit from seeing a variety of 
proofs. Another reason to vary the mathematical approach to the proof is to emphasize, 
with Dienes (1960), the common mathematical structure—at least what assumptions are 
being made. For example, it’s not too difficult to see how the proofs above use the 
regularity of the triangle. Where does each proof use the assumption that the hut is in the 
interior of the island? (Jones and Shaw (1988) and Zheng (2002) consider, among other 
extensions, the relaxing of this assumption.) Proofs that give insight into mathematical 
structure illustrate Bell’s (1976) systematisation function of proof. 

Do you find any of these proofs better than any others?  Are they more logically 
acceptable?  Do they answer the question Why? for you? 

As we look back over the proofs we’ve presented, we are practicing an important 
problem-solving strategy: reflection.  Indeed, the proofs themselves illustrate quite a few 
such strategies: looking for invariants, thinking about special cases, reasoning by 
continuity, working backwards as well as forwards in proving, and the interplay of 
induction and deduction. Moreover, it is important for teachers to remember that these 
proofs are finished products, winnowed from a larger set. Demonstrating the messy 
process that created them and their uglier relatives invites students into mathematics as a 
human activity. 

Whys reflections 
Our primary reflection, however, has been considering what constitutes a satisfactory 
answer to the question Why? Brown (2001) has suggested that discussing questions such 
as Which of these approaches is more elegant? and even Is it OK to discuss elegance in a 
mathematics class? can help students to see that mathematics is a human activity and thus 
to grow in their understanding of humanity.  We propose that similar benefits can accrue 
from a discussion of the question What is a satisfactory answer to the question Why?”   

Human beings are faced with the question Why? in many aspects of their lives—social, 
aesthetic, religious. Pedagogical approaches that engage students in experiencing a 
variety of answers to Why? in the mathematical realm can help them learn about their 
own standards. A mathematics teacher’s public recognition of the importance of the 
question can increase students’ appreciation of mathematics as a human activity and of 
themselves as human beings.  
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